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ABSTRACT 
A new horns family is presented, the Hybrid Constant Directivity (HCD), investigating some practical aspects of 
constant directivity design through physical and FEA 3D prototypes. Horn driver SPL simulations are conducted using 
a method already presented to the scientific community and here improved, lead to a minimum mismatch between horn 
simulations and measurements. A detailed directivity and numerical match of the beam-width are examined with a 
direct SPL comparison among exponential, tractrix and spherical expansions. Then, horns aspect ratio is changed 
obtaining HCD elliptical and rectangular mouth horns referenced and correlated to the circular one SPL simulation. 
Also wave-front shapes, mouth diffraction effects and radiation impedances are analyzed. Finally, the mathematical 
model for calculating HCD horns is disclosed. 

 

1 Background 
This article has been written starting from an acoustic simulation study presented at the Comsol 2015 Conference, 
Grenoble (France) [1]. On that research a new simulation method, about high frequency horn driver transducers, was 
presented. The method comprises a horn simulation and a compression driver plane wave tube (PWT) measurement. 
Combining only these two data, using a novel equation that correlates the matrix of the virtual horn and the physical 
compression driver pressure, is possible to easily predict the absolute sound pressure level of the real horn driver 
frequency response. The following equation has been presented: 
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Where 𝐿𝐿𝑝𝑝𝑝𝑝𝑓𝑓𝑥𝑥  is the horn driver absolute sound pressure level calculated for each frequency, 𝐿𝐿𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓  is the compression 
driver sound pressure level measured on PWT at a given frequency,  𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑥𝑥

 is the sound pressure of the horn simulation 
calculated for each frequency and 𝐿𝐿𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑥𝑥is the compression driver sound pressure level measured on PWT for each 
frequency. Lp are expressed in dB and p in Pa. The results showed a good match between simulations and measurements 
up to 15 kHz. We found that the main limit is the assumption of a plane wave, which does not hold for higher 
frequencies. On section 4 is described the improved model. 

2 Hybrid Constant Directivity (HCD) 
The two main reasons why horns are used in sound systems are high efficiency (and consequently high SPL at relative 
low distortion) and directivity control. We want to focus on the second point: directivity. The question is: is it possible 
to transform a conventional expansion horn (exponential, hyperbolic sine, hyperbolic cosine, catenoidal, tractrix, 
spherical, etc.) into a constant directivity horn, without loose sound characteristics of the expansion? Considering a 
mathematical expansion law of a horn it is possible to extend expansion profiles for a progressive match between throat 
and different mouth shapes. If we keep the defined horn expansion law following the same volume expansion, within 
certain limits, we can modify boundary profiles to satisfy special needs. The necessity we want to satisfy is the constant 
directivity, maintaining the sound characteristic that identify the expansion. The horn mathematical progression is 
always guaranteed, so the key is to have a non-deformable volume gradient. In this way if we want a hyperbolic cosine 
profile we will maintain the same load and low frequency control, but we can obtain also the directivity control on one 
plane. 
 



 

 

  
 

Figure 1. Sample X represents the segments number that approximates the horn volume expansion on the x axis. X=3 (left), X= 30 (right). 
 
 
The volume expansion is discretized by the X, Y values number. As for the 2D mathematical profile, the 3D volume 
discretization approximates the selected ideal expansion. Better approximation occurs when reducing the step as it is 
observable in Fig. 1. For the current prototypes, on x axis for example, an X value is carefully selected to obtain a step 
of 1.85mm, thus every step the horn volume adapts its expansion matching the selected mathematical law. This is a 
coarse step, generating a 61k 3D point’s cloud, useful for a demonstration purpose, but for an accurate surface 
reconstruction of a similar product with this dimension it’s suggested a finer mesh, about 1M points. We can call these 
kinds of horns Hybrid Constant Directivity (HCD) and they can guarantee: 
 

• the expansion we already know; 
• a progressive constant directivity on the plane along its mouth major axis; 
• an equivalent directivity contour of a circular mouth horn (using the same expansion) on the plane along its mouth 

minor axis. 

With this type of horns the maintenance of constant directivity with frequency in high-frequency exponential horns (and 
all other expansions) is possible on one plane and the constant directivity progression depends on the mouth ratio. These 
kinds of horns are useful for all applications where a directivity control on one plane is requested. Various HCD horns 
are nowadays available on the market, mainly from the Italian professional audio manufacturer as single components 
and used all over the world in diverse loudspeaker systems, also for home hi-fi. 

3 Aspect-Ratio 
First of all we are going to analyze a commercial 1.4 Inch throat elliptical mouth horn (Fig. 2), which was calculated 
using SpeakerLAB Horn.ell.a [2].  
 

 
Figure 2. Section planes. Plane A along the major axis of the horn mouth and plane B along the minor axis. 

We can use constant directivity along a vertical line or along a horizontal line; it depends on requirements and by the 
application. For this reason, to avoid confusion, I prefer to talk about general planes and not vertical or horizontal one. 
For convenience we define here two section planes. A is the section along the major axis of the horn mouth (the plane A 



 

 

here is always referred to the constant directivity section plane) while B is the one along the minor axis. This is true 
when the horn mouth has an aspect-ratio>1. The mouth aspect-ratio (MR) is always referred to the horn mouth and it 
represents the ratio between mouth major and minor axis. Usually ratios between values of 1 and 1.8 are used. As we 
know, the directivity of a horn is controlled down to a frequency that has a wavelength comparable to the horn mouth. 
Regarding the two perpendicular section planes square mouth horns will have the same directivity at lower frequencies, 
so for a square horn it is possible to modify its directivity only in a limited frequency range. For this reason a square 
HCD horn is treated as a circular horn. If MR= 1 the horn has a circular or a square mouth and we have only one section 
plane (because plane A= plane B). It’s possible to have MR> 2, maintaining the selected expansion and reducing wave-
front deformations. Modifying the mouth ratio of a horn by means of the new mathematical model, it changes the major 
and the minor axis, gradually transforming the major axis in a pseudo-conical profile, obtaining a constant directivity on 
one plane. In the next sections we will see how it is possible to increase the aspect-ratio, discover how the aspect-ratio 
value is linked to the constant directivity coverage angle and why the aspect-ratio value is being increased. 

4 Horn driver model 
A rigid circular piston, with a planar surface and the same radius of the horn throat, has been modeled as a source to 
load all simulated horns. This condition produces an acoustic pressure, in order to predict horns directivity. The 
standard model generates directivity as seen in Figs 3, 4, analyzing these contours, starting from a certain frequency the 
simulated high frequency band is different compared to the final product measurements graphs (Figs 5, 6). 
 
 

  
 

Figures 3, 4. Simulated plane A (left) and plane B (right) directivity plots. 
 

 

 

    
 

Figures 5, 6. Measured plane A (left) and plane B (right) directivity plots. Smooth 1/2 Octave. 
 
The scope is trying to study in detail the horn driver high frequency directivity behavior, in order to improve 
simulations results and also to calibrate the model. This step is necessary if we want to predict horns directivity plots 
with a good accuracy.  
 

 
 

Figure 7. Horn driver 1W frequency response. Microphone on axis at 1m distance from the mouth. Measurement done in anechoic room in a 
free field condition. Upper curve smooth 1/3 Octave, lower curve -20 dB unsmoothed . 



 

 

The measurements were done using a compression driver mounted to the physical horn as given in Fig. 2; together they 
produce a frequency response as Fig. 7 shows. If we put the compression driver phase-plug into the simulated model, 
we can see that simulations of Figs. 8, 9 and measurements of Figs. 5, 6 are very similar now, with an improved match 
at higher frequencies. 
 
 

  
 

Figures 8, 9. Simulated plane A (left) and plane B (right) directivity plots. New horn model with the phase-plug added. 
 
 
This is due to phase-plug acoustic expansion on its channels exit. Consequently, starting at a certain frequency, which 
depends on the horn throat diameter, the higher frequency directivity depends more on geometry, shape, channels 
number and mathematical progression of the phase-plug. Then a thermo-viscous acoustic is applied on the phase-plug 
channels adding losses for an improving result. To understand better why the main limit is the assumption of a plane 
wave on the horn throat it is  
 

 

    
 
 

Figures 10, 11. One of the first phase-plug prototypes added to the used model, which produces the plane B directivity plot. 
 
 
reported the behavior of one of the first phase-plug prototypes (Fig. 10) which produces a plane B directivity plot of 
Fig. 11. Examining the sound pressure distribution on the horn throat (Figs. 12, 13), we can see that on the boundary, 
generally modelled for the ideal plane wave, the wave-front arriving from the phase-plug is not uniform.   
 

 

 
 

 
Figure 12. Horn throat sound pressure distribution @14  kHz. 
 

 
 



 

 

 
 
 

Figure 13. Horn throat sound pressure distribution @18 kHz. 
 
 
Increasing the frequency the pressure transfers from the margins to the core of the horn throat. This is a clear and simple 
example that explains one of the phase-plug’s aims, it has to align the wave arrival times trying to reproduce a plane 
wave on its exit and at the same time it has to suppress cavity resonances, using Bessel [3] functions (for the cylindrical 
cavity mode shape functions) or Legendre [4] functions (for the spherical cavity mode shape functions), for selecting 
phase-plug channels locations on nodal positions in the cavities, hence where they have the cavity mode shape functions 
(or Eigenfunctions) with a value equal to zero. As we know simulation accuracy is obtained when we model the full 
horn driver, with the entire compression driver comprising vibro-acoustic coupling for the membrane, because the 
systems are strongly coupled. However, simulating a virtual horn to combine it with a physical compression driver, with 
some smart ideas we can reduce the error to an acceptable level limiting the horn model to the acoustic path only, 
including the phase plug. Fig. 14 shows the final result of the simulation using the model described here and the method 
already presented on the introduction. My target is to have a general and valid horn model independent of the 
compression driver, because here I want to describe a new horn type, neither a driver nor a phase-plug. 
 
 
 

 
 

 
Figure 14. Measured (red) and simulated (black) 1÷20 kHz absolute sound pressure frequency response of a horn driver. The compression 
driver is a commercial 1.4 Inch available nowadays on the market. The horn is the same of Figure 2. 
 
 

5 HCD horn directivity 
Considering the chromatic match between simulations and measurements of the directivity color plots, in Figs. 15, 16 
we can appreciate a numerical match of the beam-width. As generally defined, beam-width is defined here as the 
coverage angle in which an SPL loss of 6 dB occurs relative to the zero degrees reference angle (the on-axis direction). 
As we can see in the Fig. 15, on plane A the beam-width is well controlled, in this case we see a coverage angle of 
62.3° in the frequency range 1.35÷20 kHz. On plane B (Fig. 16) from 4 kHz upward there is a regular beam-width, but 
it exceeds 6 dB, moreover it is not fixed but it depends on the selected expansion. So for the plane B we can calculate 
an averaged value but in my opinion it is not formally correct to give a unique value because the reader, or a buyer of a 
similar product, could be misled when comparing HCD to CD horns. This rule is valid also for all cases of horns with a 
non-constant directivity beam-width, for example all pure profiles as exponential, tractrix, spherical, etc. with a circular 
mouth. It doesn’t make sense to declare a coverage angle with a single value in a similar situation, because, of course 
we can use them, but these horns in pure shapes were not thought for this purpose.  
 



 

 

  
 

 
Figures 15, 16. Beam-width measurement and simulations on plane A (left) and plane B (right). 
 
 
For HCD horns we can use for example the wording COVERAGE ANGLE x SELECTED EXPANSION, so Fig. 2 horn could 
be a commercial 62° X HYPERBOLIC. For that reason I use the name “Hybrid” constant directivity horn. From the 
beam-width analysis we can see that it is possible to improve the model simply by adding a phase-plug. Anyway, up to 
15 kHz the simplified model works well for our purposes, because you must always take into account that a different 
phase-plug (so a different compression driver) will influence the upper frequency range. Therefore, we can work with 
3D horns simulations only -considering the model reliability- paying attention to all next directivity and beam-width 
plots and not considering the high frequency beam, because as we have previously seen in the real conditions for a 1.4 
Inch horn directivity >15 kHz depends on the horn-driver combination. 
 

6 Horn expansion efficiency 
One of the most efficient horn expansions is the exponential profile. This horn is extraordinarily efficient as an acoustic 
transformer device due to its impedance match between the source of sound at the throat of the horn and the atmosphere 
into which the horn mouth radiates. But what is the SPL difference between an exponential expansion and other types? 
 

 
 

Figure 17. Exponential horn normalized frequency response (REF) and the relative difference of a tractrix (red) and a spherical (green) 
horn, referenced to the pure exponential one (black). Simulations @1m distance on axis. 
 
 
Fig. 17 horns were designed starting from the same values. This interesting graph shows that near the cut-off frequency 
the tractrix and the spherical have more pressure. This is mainly due to the natural flared mouth of these expansions, 
compared to the pure exponential expansion whose calculus has an unflared mouth. Then there is a range in which 
exponential has more energy followed by a range in which tractrix and spherical have an averaged increased SPL. 
Starting from a pure exponential circular mouth profile, which produces directivity we already know for this standard 
horn type  
 

  
 

Figures 18, 19. Circular mouth pure exponential horn directivity (left), with flared mouth (right). 



 

 

    
 

Figures 20, 21. Elliptical mouth HCD horns arrangement. MR= 1.7 (left), MR= 2.4 (right). 
 
 
(Figs. 18, 19), we want to obtain two different horns simply acting on the minor axis value to increase mouth ratio, 
defining two HCD horns with two different ratios, MR= 1.7, MR= 2.4 (Figs. 20, 21). Directivity plots (plane A left and 
plane B right) of the two horns are reported in Figs. 22 to 29. Horns are in a pure exponential expansion with two 
different mouth ratios. It is shown also the directivity of the same horns with a flare added to the original design. We 
can read more about this point in section 8. 
 
 

  
 

Figures 22, 23. Elliptical mouth HCD horn (MR= 1.7). 
 

  
 

Figures 24, 25. Same horn of Figs. 22, 23 with flared mouth. 
 

  
 

Figures 26, 27. Elliptical mouth HCD horn (MR= 2.4). 
 

  
 

Figures 28, 29. Same horn of Figs. 26, 27 with flared mouth. 



 

 

 
In Figs. 30, 31 we can compare simulated beam-width of the two elliptical horns. As we can see the two MR have a 
different constant coverage angle on the plane A, useful for a different application, respectively 65° (MR= 1.7) and 75° 
(MR= 2.4). Furthermore, when increasing MR we are also reducing the coverage angle maximum difference on the 
constant directivity plane (Fig. 30).  
 

  
 

Figures 30, 31. Circular (black) and elliptical mouth horns beam-width comparison. HCD horn with MR= 2.4 (red) compared to the HCD 
horn with MR= 1.7 (green). Plane A (left) and plane B (right).  
 
 
Analyzing the sound pressure between the circular horn and the elliptical one, we can see in Fig. 32 the relative SPL 
difference, simulated on axis at 1m distance. Obviously the circular has more energy because its beam-width is focused 
on axis, while elliptical ones have a spread energy around space because they cover a bigger angle on the plane A. It’s 
interesting to see that the dB loss for the two elliptical horns is limited if compared to the circular one. The dB loss is 
controlled for a great portion of the frequency bandm, taking into account that for a rectangular mouth horn, analogous 
to the elliptical one with MR= 2.4, the relative on axis SPL difference is substantial. 
 

.  
 

Figure 32. Normalized exponential circular (MR= 1 REF) horn frequency response and the relative SPL difference of the same horn 
expansion with modified mouth ratios. 
 
 
Also, we can see that when increasing the MR value we increase a dB loss on-axis, because of an SPL off-axis on plane 
A intensification. Indeed, when simply moving the microphone 45° off-axis we can see in Fig. 33 the difference among 
the horns. The elliptical MR= 1.7 has more SPL on the great part of the frequency range compared to the others with 
MR= 2.4 referenced to the circular one. Then, fixing all parameters and adding a round corner radius (4 x 30.4mm) 
along its mouth we improve the SPL contribution of the rectangular mouth horn. 
 

 
 

Figure 33. Same of Fig. 32 with mic. 45° off-axis on plane A. 
 



 

 

Next images of Fig. 34 shows ¼ solid model of the before mentioned horns, with the relative surface mouth sound 
pressure level distribution plots for the center band frequency (10 kHz). As shown in Fig. 34d the rectangular horn, 
compared to the ellepical ones, suffers of the “corner effect”, which is because of reflections. For every frequency we 
will have a different behavior near the corner and it can influence the wave-front distortion and the general performance 
of the horn.  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 34. Horn mouth sound pressure distribution @10 kHz. Circular (a), elliptical MR= 1.7 (b), elliptical MR= 2.4 (c), rectangular MR= 
2.4 (d). 
 

  
 

Figures 35, 36. Exponential HCD horn directivity of the round corner (30.4mm) rectangular flared mouth (MR= 2.4). Plane A (left), plane B 
(right). 
 
 
This is a common problem of horns having rectangular mouths, while elliptical mouths horns avoid the lack of polar 
pattern control along the diagonal. Figs. 35, 36 are useful for a comparison with the other presented directivities. 
 

7 Horn wave-front shape 
Analogous to the coverage angle, the coverage area is defined as the area limited by the isobar having a level of 6 dB 
below the maximum value found on the sphere. The coverage area gives useful information about the horn wave-front 
shape. HCD horns generating a wave-front with a flat zone that has a contour similar to the horn mouth which generates 
it. In Figs. 37, 38, 39 are shown some examples of the wave-front shape @10 kHz of the examined HCD horns. The 
wave-front on the left and the particular of the coverage area on the right. 

 

 
 

Figure 37. Elliptical flared mouth (MR= 1.7) exponential. 
 

(b) (a) 

(c) (d) 



 

 

 
 

Figure 38. Elliptical flared mouth (MR= 2.4) exponential. 
 
 

 
 

Figure 39. Round corner rectangular flared mouth (MR= 2.4) exponential. 
 
 

8 Mouth diffraction effects 
Some types of horns have a flared mouth (tractrix and spherical expansions for example), while the hypex family horns 
(exponential is included in this family) have an unflared mouth. It is reported the differences on the directivity polar 
patterns between a standard exponential horn compared to the same shape but with a flared mouth. From the graph of 
Fig. 41 we can see the frequency response deviation of the circular mouth exponential horn with a flared end loop of 
Fig. 40, along its mouth profile. Graph 42 shows the same comparison but related to the elliptical mouth exponential 
horn (MR= 2.4), using a similar flared end of Fig. 40. The flare shape is not optimized for a specific application and it is 
showed for the higher MR horn. Comparing Fig. 43 with 42, discrepancy may be explained by the influence of the 
cross-modes, clearly on elliptical and rectangular horns are not symmetrical.  
 

 
 

Figure 40. Example of a flared end, solid part in red, added to the exponential expansions horn mouth profile. 
 



 

 

    
 

Figure 41. Normalized on axis frequency response of the circular mouth exponential horn with flared mouth (red), referenced to the same 
horn with unflared mouth (black). 
 

 

 
 

Figure 42. Normalized on axis frequency response of the elliptical mouth HCD exponential horn (MR= 2.4) with flared mouth (red), 
referenced to the same horn with unflared mouth (black). 
 
 

 
 

Figure 43. Normalized on axis frequency response curve of the rectangular mouth HCD exponential horn (MR= 2.4) with flared mouth (red), 
referenced to the same horn with unflared mouth (black). 

 
 
We can deduce also that the total frequency averaged SPL contribution of a flared mouth, using the flare profile of Fig. 
40, is positive for the circular, near to zero for the elliptical and negative for the rectangular mouth horn, Fig. 43.  
Analyzing now the elliptical mouth exponential horn (MR= 1.7) polar patterns of Fig. 44, we can see that on the 
constant directivity plane A, the flared mouth has a very small influence on the off-axis horn performance, because the 
wave-front is guided by the pseudo-conical shape. On the plane B, showed in Fig. 45, the flared mouth has a significant 
influence due to acoustic pressure. As per above, for mouth ratios> 1 (in general for all horns having a different 
progression on perpendicular side sections) there is 
 



 

 

 
Figure 44. Elliptical mouth exponential horn (MR= 1.7) polar patterns on plane A. Unflared (left) and flared mouth (right). 

 
 

 
Figure 45. Elliptical mouth exponential horn (MR= 1.7) polar patterns on plane B. Unflared (left) and flared mouth (right). 

 
not a unique profile to build a flared mouth, but we need to differentiate it along the mouth loop. Resuming, on the horn 
constant directivity profile we can reduce the flare dimension as it has a minor impact, on the contrary on plane B it has 
a great importance and it must be accounted for to obtain a good polar pattern, frequency and impulse response at the 
same time. The frequencies where we can find problems on directivity polar patterns depend on geometry, dimension 
and expansion of the horn and in this case are in the range 5÷8 kHz. Please note that the according to a polar patterns 
analysis for a horn application in full space (4π steradian solid angle), indeed the problems could be outside the horn 
coverage angle, but when we apply the horn in half space (2π steradian), meaning that horn is applied on a panel, the 
flared mouth could have a different result. Underlining that the flared mouth of Fig. 40 is not considered for a 4π 
steradian application, but it is specific for 2π steradian. In general for 2π steradian is also necessary to study the 
interactions between the horn mouth and other obstacles influencing directivity, frequency or impulse response, for 
example if the horn or the other loudspeakers are flush mounted. 
 

9 HCD mathematical model 
As we know from Beranek’s [5] text, Section 11 of Chapter 5, when we have a junction of two pipes with different 
areas a discontinuity occurs creating a reflected wave which will be sent back toward the source. A similar behavior 
happens for the changes in multiflare horns [6] because of a step and/or a sharp change in the cross-sectional areas flare 
constant, causing a discontinuity in radiation impedance. In multiflare horns the boundaries could be very convenient 
for directivity control, counter side these horns type cannot always guarantee a perfect impulse response if compared to 
an exponential expansion. Keeping a similar concept of the radial horn [7] (two planes differentiation), HCD horn’s 
algorithm reduces these flare changes to reach the target directivity on one plane and at the same time it preserves the 
loading of a designated expansion, minimizing any discontinuity in radiation impedance. The radiation impedance 𝑍𝑍 is 
defined as the complex ratio of the pressure to the particle velocity. The real and imaginary components of 𝑍𝑍 may be 
expressed as 𝑍𝑍 = R +  𝑖𝑖X, where R is the  



 

 

 
 

Figure 46. Normalized mouth (blue) and throat (green) radiation impedance of the flared circular exponential horn. 
 

 

 
 

Figure 47. Normalized mouth (blue) and throat (green) radiation impedance of the flared elliptical exponential HCD horn MR= 1.7. 
 
 

 
 

Figure 48. Normalized mouth (blue) and throat (green) radiation impedance of the flared elliptical exponential HCD horn MR= 2.4. 
 

 

  
 

Figure 49.  Throat radiation impedances comparison. 
 

 
resistive and X is the reactive portion of the radiation impedance. The low frequency directivity control depends on the 
used expansion function and selected parameters, generally control starts from mouth 𝑍𝑍𝑠𝑠𝑠𝑠𝑚𝑚after the frequency cut-off. 
HCD horn can transform all expansions, keeping an equivalent circular profile on one plane while on the perpendicular 
one the profile is mainly governed by the mouth ratio, having a tendency to conic if the mouth ratio≫ 1. The algorithm 
is based on the following discretization process. In the top of Fig. 50 is shown an axisymmetric circular horn, where 𝐴𝐴𝐴𝐴 
is the cross-sectional area of the horn throat and 𝐴𝐴𝐴𝐴𝑅𝑅  is the cross-sectional area of the horn mouth,  



 

 

 
 
Figure 50. Axisymmetric circular horn geometry and model discretization. Variables are defined in text.  
 
 
characterized by the mouth shape and its ratio. If for 𝑅𝑅 = 1 we have a circular mouth horn, for 𝑅𝑅 > 1 we have an 
elliptical mouth horn. If for 𝑅𝑅 = 1 we have a square mouth horn, for 𝑅𝑅 > 1  we have a rectangular mouth horn. 
Assuming the horn walls are rigid and the fundamental acoustic equations are applicable, the horn volume is discretized 
by a series of 𝑁𝑁 conical waveguide elements, showed in the bottom image of Fig. 50, as a small air volume 𝑉𝑉𝑉𝑉𝑅𝑅 that 
expands as a function of the distance 𝑘𝑘 along the 𝑧𝑧 axis, between 0 and the horn length 𝐿𝐿. The volume 𝑉𝑉𝑉𝑉𝑅𝑅 is given by 
the two bounding cross-sectional areas 𝐴𝐴𝑉𝑉, 𝐴𝐴𝑉𝑉 + Δ and the finite sub-interval width Δ, where Δ represents a small 
increment of the horn expansion. Assuming cross-sections parallel to the plane 𝑂𝑂𝑂𝑂𝑂𝑂 at the corresponding  𝑧𝑧 = 𝑉𝑉𝑘𝑘, for 
0 ≤ 𝑉𝑉 ≤ N all the contours are concentric circles centered at the origin and for k → 0, Δ became a differential 
infinitesimal step 𝑑𝑑𝑧𝑧. The expansion of a horn (exponential, tractrix, spherical…) is expressed by its function ψ𝑉𝑉 and 
the rate expansion of ψ𝑉𝑉 is the solution for finding the surface area 𝐴𝐴𝐴𝐴𝑅𝑅  and all 𝐴𝐴𝑉𝑉 along 𝑧𝑧. Exploring the elliptical 
mouth case (the procedure is analogous for square and rectangular mouth cases) with a circular throat, the first 
condition is the equal volume arrangement: 
 

𝑉𝑉𝑉𝑉𝑅𝑅=1  −  𝑉𝑉𝑉𝑉𝑅𝑅>1 = 0                       (1) 
 
where 𝑉𝑉𝑉𝑉𝑅𝑅=1 represents the small conical waveguide element with circular shape sides and 𝑉𝑉𝑉𝑉𝑅𝑅>1 represents the small 
conical waveguide element with elliptical shape sides, given by the shape ratio 𝑅𝑅 > 1. The small air volume 𝑉𝑉𝑉𝑉𝑅𝑅>1 has 
the two sides 𝐴𝐴𝑉𝑉, 𝐴𝐴𝑉𝑉 + Δ with elliptical shapes, characterized by their specific eccentricity 𝜀𝜀𝑚𝑚 and their linear 
eccentricity 𝑓𝑓𝑚𝑚, where 𝜀𝜀 is a non-negative real number (0 ≤ 𝜀𝜀 < 1) and 𝑓𝑓 is the distance between the ellipse center and 
either of its two foci.   
For Δ → 0 the first condition (1) will be: 
 

𝐴𝐴𝑉𝑉𝑅𝑅=1  −  𝐴𝐴𝑉𝑉𝑅𝑅>1 = 0                                                    (2) 
 

Where 𝑧𝑧 = 𝑘𝑘𝑉𝑉 and 0 ≤ 𝑧𝑧 ≤ L 
 

𝐴𝐴𝑉𝑉 = 𝐴𝐴𝐴𝐴  
𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠
�⎯⎯�  𝜀𝜀 = 0                                                 (3)

      

𝐴𝐴𝑉𝑉 = 𝐴𝐴𝐴𝐴𝑅𝑅>1   
𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠
�⎯⎯� 𝜀𝜀 = 𝑓𝑓

𝑎𝑎
                        (4)

     

Where 𝑎𝑎 is defined as the horn mouth semi-major axis. Since 𝜀𝜀𝑚𝑚 represents the circular shape deviation along z axis, 
selecting a small finite sub-interval width Δ (in other words a small mesh) the radiation impedance is subjected to a 
corresponding small variation, for instance visible on radiation impedance graphs, Figs. 47, 48 compared to Fig. 46. 
Small differences observable in Fig. 49 are due to mouths flared end and selected sub-intervals. Considering the circular 
shape as a degeneration of the elliptical shape (having 𝑎𝑎 = 𝑏𝑏 for 𝑅𝑅 = 1, where 𝑏𝑏 in the initial condition is defined as the 
radius of the circle and then as the elliptical horn mouth semi-minor axis, stretched by a factor R, that for 𝑅𝑅 > 1 is 
always 𝑏𝑏 < 𝑎𝑎 (𝑎𝑎, 𝑏𝑏 > 0 and 𝑎𝑎, 𝑏𝑏 ∈ ℝ)), the conditions (3) and (4) can be expressed as a unique function depending on 
eccentricity 𝜀𝜀(𝑧𝑧) where: 
 

𝜀𝜀𝑅𝑅=1(𝑧𝑧) = 0                                (5) 
 

𝜀𝜀𝑅𝑅>1(0) = 0                          (6) 
  

𝜀𝜀𝑅𝑅>1(𝐿𝐿) = 𝑓𝑓
𝑎𝑎
                               (7) 
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Defined a circular mouth horn by the expansion ψ𝑉𝑉 and the rate expansion of ψ𝑉𝑉 for finding the surface area 𝐴𝐴𝑉𝑉, it is 
possible to compute an equivalent elliptical mouth horn, defining 𝜀𝜀𝑅𝑅>1(𝑧𝑧) that respect the conditions (6) and (7): 
 

𝜀𝜀𝑅𝑅>1(𝑧𝑧) =  �1 −�
𝜋𝜋 ��𝐴𝐴𝑛𝑛𝜋𝜋 −𝑧𝑧𝑧𝑧�

2

𝐴𝐴𝑚𝑚
�

2

                    (8) 

  

where 𝛿𝛿 is a fixed term used for the eccentricity progression along the horn length 𝑧𝑧. Horns developed for this paper a 
linear function (9) along 𝑧𝑧 has been used: 
 

𝛿𝛿 = 𝑏𝑏𝑠𝑠𝑅𝑅=1−𝑏𝑏𝑠𝑠𝑅𝑅>1
𝐿𝐿

                                 (9) 
 

Some 𝜀𝜀𝑅𝑅>1(𝑧𝑧) curves are reported in Fig. 51 for different mouth ratios, where each curve represents how fast the section 
transformation is for a given HCD horn mouth ratio. 
 

 
 

Figure 51. Eccentricity curves example for a given HCD horn with different mouth ratios. 
 
 
The equation of a circle can be written in terms of x in the first quadrant: 
 

𝑂𝑂(𝑂𝑂) = √𝑏𝑏2 − 𝑂𝑂2                                      (10) 
 

Finding the enclosed area: 
 

𝐴𝐴𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦 = � 2 √𝑏𝑏2 − 𝑂𝑂2 𝑑𝑑𝑂𝑂
𝑏𝑏

−𝑏𝑏                                       (11) 
 

Integrating the horn length referred to a function of 𝑧𝑧 and assuming 𝛽𝛽(𝑧𝑧) the function of 𝑏𝑏 along 𝑧𝑧: 
 

𝑉𝑉𝑉𝑉𝑅𝑅=1 = ∫ 𝐴𝐴𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦
𝐿𝐿
0 (𝑧𝑧)𝑑𝑑𝑧𝑧 = � � 2 �𝛽𝛽2(𝑧𝑧) − 𝑂𝑂2 𝑑𝑑𝑂𝑂

𝛽𝛽(𝑧𝑧)

−𝛽𝛽(𝑧𝑧)

𝐿𝐿

0
𝑑𝑑𝑧𝑧                 (12) 

 

The equation of an ellipse can be written in terms of 𝑂𝑂 in the first quadrant: 
 

𝑂𝑂(𝑂𝑂) = 𝑏𝑏�1 − 𝑥𝑥2

𝑎𝑎2                  (13) 
 

For 𝑂𝑂 ∈ [−𝑎𝑎, 𝑎𝑎],  𝑂𝑂(𝑂𝑂) represents the positive half of the ellipse, so twice the integral of 𝑂𝑂(𝑂𝑂) over the same interval will 
be the area: 
 

𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑝𝑝𝑠𝑠𝑦𝑦 = � 2𝑏𝑏�1 − 𝑥𝑥2

𝑎𝑎2
𝑑𝑑𝑂𝑂

𝑎𝑎

−𝑎𝑎

                  (14) 

 

Integrating the horn length referred to a function of 𝑧𝑧 and assuming 𝛼𝛼(𝑧𝑧) the function of 𝑎𝑎 along 𝑧𝑧: 
 

𝑉𝑉𝑉𝑉𝑅𝑅>1 = � 𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑝𝑝𝑠𝑠𝑦𝑦
𝐿𝐿

0
(𝑧𝑧)𝑑𝑑𝑧𝑧 = � � 2𝛽𝛽(𝑧𝑧)�1 − 𝑥𝑥2

𝛼𝛼2(𝑧𝑧)
𝑑𝑑𝑂𝑂

𝛼𝛼(𝑧𝑧)

−𝛼𝛼(𝑧𝑧)

𝐿𝐿

0

𝑑𝑑𝑧𝑧               (15) 

And expressing through (8): 
 

𝑉𝑉𝑉𝑉𝑅𝑅>1 =

⌡
⎮
⎮
⌠

� 2��𝐴𝐴𝑚𝑚
𝜋𝜋
− 𝑧𝑧𝛿𝛿��1 − 𝑥𝑥2(1−𝜀𝜀2(𝑧𝑧))
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2 𝑑𝑑𝑂𝑂
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−𝛼𝛼(𝑧𝑧)

𝐿𝐿

0

𝑑𝑑𝑧𝑧                    (16) 

 



 

 

We can write (1) in integral form as a function of 𝐴𝐴𝑉𝑉 and 𝜀𝜀: 
 

� � 2 �𝐴𝐴𝑚𝑚
𝜋𝜋
− 𝑂𝑂2 𝑑𝑑𝑂𝑂

𝛽𝛽(𝑧𝑧)

−𝛽𝛽(𝑧𝑧)

𝐿𝐿

0

𝑑𝑑𝑧𝑧  −  

⌡
⎮
⎮
⌠

� 2��𝐴𝐴𝑚𝑚
𝜋𝜋
− 𝑧𝑧𝛿𝛿��1 − 𝑥𝑥2(1−𝜀𝜀2(𝑧𝑧))

��𝐴𝐴𝑛𝑛𝜋𝜋 −𝑧𝑧𝑧𝑧�
2 𝑑𝑑𝑂𝑂

𝛼𝛼(𝑧𝑧)

−𝛼𝛼(𝑧𝑧)

𝐿𝐿

0

𝑑𝑑𝑧𝑧 = 0             (17) 

 
Starting by the known surface area, satisfying the boundary conditions (1), (3) and (4), solving them in a system (17) in 
function of the eccentricity (8), the result is an elliptical HCD horn. Using an analogous procedure with a radius, instead 
eccentricity, as the degenerate function in the second term of (17), it is possible to find an equivalent expression for 
calculating the square mouth horn. For the rectangular mouth horn is also necessary to add the major axis in the 
degenerate function of the square mouth, using this new variable as a divergence function between 𝑏𝑏 and 𝑎𝑎 along the 
horn length 𝐿𝐿. More generally it’s possible to produce a HCD horn starting from any known (or a new) expansion 
function, using one or more degenerate functions to adapt throat to mouth profiles along the horn length, keeping the 
correspondence between volumes.  
 

10 Conclusions 
A new family of horns has been presented, the Hybrid Constant Directivity (HCD). Horn-driver simulations are 
conducted using a method already presented from the author and a further development about the main limit is 
disclosed here. A new model is proposed, leading to obtain a frequency band average SPL difference of about ±1.5 dB 
between horn-driver measurement and FEA simulation. The new model is then used for simulating horns directivity and 
beam-width. A horn expansions efficiency analysis is given, through the SPL comparison among exponential, tractrix 
and spherical horns. A discussion about a flare side section differentiation for horns having mouth ratios> 1 is disclosed, 
more generally with a different progression on perpendicular side sections. Finally, the mathematical model for 
calculating HCD horns is presented. It is shown how the HCD horn’s algorithm reduces flare variations to reach the 
target directivity on one plane and at the same time how it preserves the designated expansion loading, minimizing any 
discontinuity in HCD radiation impedance. Overall it is exposed how it is possible to produce an HCD horn starting 
from any known (or a new) expansion function, using one or more degenerate functions to adapt throat to mouth 
profiles along the horn length, keeping the correspondence between volumes. 
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software development. 
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